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Boundary conditions for the multi-ion magnetized
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Abstract

Properties of the multi-ion magnetized plasma-wall transition (PWT) are investigated. The corresponding boundary

conditions are derived for the case when different ions species have similar gyro-radii.
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1. Introduction

Particle and heat fluxes to the wall are strongly influ-

enced by plasma conditions in the so-called �plasma-wall

transition (PWT)�, a narrow layer in front of the wall.

This makes the PWT an important subject for inves-

tigation. Major efforts in this field are concerned with

boundary conditions (BCs) at some suitable position in-

side the PWT. There are two reasons for doing this.

First, these BCs can be directly used to calculate particle

and heat fluxes to the wall, thus yielding estimates of

plasma–surface interaction processes, and second, they

are necessary for fluid codes simulating edge plasmas [1].

From the practical point of view, one of the most

important cases is the PWT in fusion plasmas, which

can be divided into the three parts: The Debye sheath

(DS), the magnetic presheath (MP) and the collisional
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(or geometrical) presheath (CP) [2]. The above-men-

tioned BCs are then formulated at the MP–CP transi-

tion, which is usually called the MP entrance (MPE).

While for a single-ion PWT the corresponding BCs have

been formulated about 20 years ago [3], up to now no

proper investigation has been made for the multi-ion

case, which is the one most relevant to fusion plasmas.

Rather, in this case a trivial generalization of the

Bohm–Chodura BC (GBC) is used, which consists in

applying the Bohm–Chodura BC for each ion species

[3,4]. Another approach has been used in [5], assuming

(without any self-consistent derivation) that in a highly

collisional limit the different ions have the same velocity

satisfying some special condition at the MPE. We also

mention papers [6–8] on the unmagnetized PWT, where

the sheath-singularity condition has been used to define

the DS entrance. This condition represents just one con-

dition for all (N) ion species and cannot be used as a

boundary condition even in the unmagnetized-plasma

case, when N conditions are needed (one condition for

each ion species).

In this work we re-discuss the BCs for magnetized

multi-ion plasmas and present results of self-consistent
ed.
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kinetic (PIC) simulations. We show that the correct BCs

can differ from the GBCs used before.

In what follows we assume that the PWT can still

be divided into a collisionless DS and MP, and a CP.

In other words, we assume that the inequalities

kD � q � lmfp are satisfied, where kD is the Debye

length, q is the largest ion gyro-radius of all given ion

species, and lmfp is the smallest mean free path.
2. Theory

First of all, let us clarify which are the quantities used

for the formulation of BCs at the MPE [4]. These are: the

potential drop between the MPE and the wall, D/MP, the

normal (to the wall surface) components of the ion fluid

velocities at the MPE, V 0
z;i, and the electron and ion

sheath heat transmission coefficients, ce,i. The latter are

defined as ce;i ¼
He;i

T e;iCe;i
, whereHe,i, Ce,i and Te,i are the nor-

mal (to the wall surface) energy and particle fluxes, and

the temperatures, respectively. We consider the case

when the PWT consists of electrons and positive ions.

The classical model of the one-dimensional MP ne-

glects gradients parallel to the wall surface and assumes

a cut-off Maxwellian distribution for the electrons at the

MPE [3], which results in

ce ¼
2

1� Ge

þ eD/MP

T 0
e

: ð1Þ

where Ge is the effective secondary electron emission

coefficient [9]. Here and below the superscript �0� will de-
fine the MPE.

Using the expression for the current density at the

MPE, we obtain after simple transformations

D/MP ¼ T 0
e

e
ln

V e
T sin affiffiffiffiffiffi
2p

p 1� GePN
i¼1s

0
i ZiV 0

z;i � I=en0e

 !
; ð2Þ

where N is the number of ion species, ne and

V e
T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T e=me

p
are the electron density and thermal

velocity, Zi and si are their charge state and concentra-

tion, respectively. a is the angle between the magnetic

field and the wall surface, and I is the current density

to the wall.

In order to calculate ci we, without loss of generality,
represent the ion distribution function at the MPE as the

sum of a shifted Maxwellian (with the parallel shift

velocity being V 0
k;i ¼ V 0

z;i= sin a) and a kinetic correction

function. Then, after simple calculations we obtain

ci ¼ 2:5þ 0:5ðV 0
k;i=V

i
TÞ

2 þ Dci; V i
T ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
T 0

i =mi

q
: ð3Þ

Unfortunately, the kinetic correction Dci, which orig-

inates from the correction function, cannot be uniquely

defined as it depends on the collisionality inside the CP

and on the upstream plasma conditions. For the single-

ion case it satisfies the condition [1] �1.5 6 Dci 6 0.
From the expressions (1)–(3) it emerges that all BCs at

the MPE (except Dci) can be defined in terms of the ion

velocities V 0
z;i. Of course, we assume that other quantities

such as particle temperatures, ion concentrations and the

current to the wall, are given. For the single-ion case

(with Zi = 1) we apply the Bohm–Chodura condition [3]

V 0
z;i ¼ C0

s sin a; Cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
viT i þ T e

mi

r
; ð4Þ

so that the system (1)–(3) reduces to the well known BCs

[4] (here we omit the index �0�):

D/MP ¼ b
T e

e
; b¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=2pme

p
ð1�GeÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

viT i=T e þ 1
p

� I=eneV e
T sina

 !
;

ce ¼
2

1�Ge

þ b; ci ¼ 2:5þ 0:5
T e

T i
þ vi

� �
þDci;

ð5Þ

where vi is the adiabatic constant (1 6 vi 6 3 [10]).

Thus, for formulating the BCs it is sufficient to find

the ion velocities at the MPE, V 0
z;i. One can do this con-

sidering the MP, or the CP. In what follows we consider

both possibilities.

The MP. We consider a half-bounded collisionless

plasma (the MP), assuming the wall at z = 0 and the

MPE at z ! �1. We assume that in the upstream part

of the MP (i.e., near the MPE) the ion dynamics can be

described by fluid equations, and follow the analysis pre-

sented in [11,12].

The ion particle and momentum conservation equa-

tions and the electron density are given by

ozðV z;iniÞ ¼ 0; V z;iozV x;i ¼ Xi
zV y;i; i ¼ 1; . . . ;N ;

V z;iozV y;i ¼ Xi
xV z;i � Xi

zV x;i; ~X
i ¼ eZi

mi
ðBx; 0;BzÞ;

V z;iozV z;i ¼ � eZi

Mi
oz/� 1

mini
ozniT i � Xi

xV y;i;

XN
j¼1

Zjnj ¼ ene ¼ en0 expðe/=T eÞ;

ð6Þ

where we have used the quasineutrality constraint and

assumed Boltzmann-distributed electrons. In order to

close the system (6) we assume that the pressure gradient

can be described by a polytropic law oz(niT)i = viTiozni.

At the MPE the gradients vanish, so that the BCs for

the system (6) take the form

V 0
x;i ¼ V 0

k;i cos a; V 0
y;i ¼ 0; V 0

z;i ¼ V 0
k;i sin a: ð7Þ

Using (6) and (7), we obtain after some transforma-

tions [11,12]

V 2
y;i ¼ �ðV z;i � V 0

z;iÞ
2ð1þ tan aÞ þ 2tan2aðV z;i � V 0

z;iÞP
� 2V 0

z;iPþ 2C� tan2aP2; i ¼ 1; . . . ;N ;

P ¼
Z V z;i

V 0
z;i

C2
i

dV z;i

V 2
z;i

; C ¼
Z V z;i

V 0
z;i

C2
i

dV z;i

V z;i
; ð8Þ
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where

C2
i ¼

viT i þ ZisiT eozne=ozni
mi

¼ C2
s;i � Di;

Cs;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
viT i þ ZiT e

mi

r
; Di ¼

ZiT e

mi

oz ln si
oz ln ni

:

ð9Þ

Cs,i the ith ion species.

Expanding the right-hand sides of the Eq. (8) near

the MPE in series of V z;i � V 0
z;i, we obtain after a simple

transformation

V 2
y;i ¼ ðV z;i � V 0

z;iÞ
2 C02

i

V 0
z;i

� 1

 !
1þ tg2a 1� C02

i

V 0
z;i

 ! !

þ Q ðV z;i � V 0
z;iÞ

3
� �

;

C0
i � Cijz!�1: ð10Þ

From this expression we immediately obtain the set

of conditions

C02

i

V 02

z;i

� 1

 !
1þ tg2a 1� C02

i

V 02

z;i

 ! !
P 0; ð11Þ

yielding the following BCs for the ion speed at the MPE:

C0
i sin a 6 V 0

z;i 6 C0
i ; i ¼ 1; . . . ;N : ð12Þ

An important consequence of (9) and (12) is the set of

conditionsffiffiffiffiffiffiffiffiffiffi
vi
T 0

i

mi

s
< V 0

k;i; i ¼ 1; . . . ;N : ð13Þ

Note that, contrary to the single-ion case, the condi-

tions (12) are less informative. First of all, C0
i depends

not only on local parameters (Ti,e and si), but also on

local derivatives (joz ln si/oz lnnijz!�1 = olnni ln sijz!�1).

Another disadvantage of the conditions (12) is that even

if one of them is satisfied marginally this will not guar-

antee that the other conditions are also satisfied margin-

ally. Thus, the corresponding ion velocities cannot be

explicitly defined. Still, these conditions deliver useful

information: they indicate (i) the maximum allowed

velocity at the MPE for which a monotonic MP can still

develop, and (ii) that the generalized Bohm–Chodura

condition (used probably in all multi-ion fluid codes),

C0
s;i sin a 6 V 0

z;i, i = 1, . . ., N, can be satisfied only in the

special case oln ni ln sijz!�1 = 0, i = 1, . . . ,N.

As we will see below, it is useful to derive a BC which

is independent of the local derivatives. After some trans-

formations we obtain from (12)

XN
i¼1

Z2
i s

0
i

miV 02

k;i � viT
0
i

6
1

T 0
e

: ð14Þ

The CP. As we have shown, treatment of the MP did

not yield all the information necessary for formulating
the BCs at the MPE. Let us now consider the CP [13].

As was done for the MP, we assume a constant magnetic

field and neglect gradients parallel to the wall surface.

Then the corresponding BCs can be formulated as a sin-

gularity condition at the MPE. Here we follow the

multi-ion CP analysis presented in [6–8] for unmagne-

tized plasmas. We consider a half-bounded collisional

plasma (the CP) assuming the MPE at z = 0 (this corre-

sponds to the limit q ! 0). Then for the one-dimen-

sional CP (i.e., a CP uniform along the directions

parallel to the wall surface) the ion particle and parallel

momentum conservation equations and the electron

density can be written

ozðV k;iniÞ ¼ Si;
XN
j¼1

Zjnj ¼ ene ¼ en0 expðe/=T eÞ;

V k;iozV k;i ¼ � eZi

mi
oz/� viT i

mini
ozni �

Ri

mi
;

ð15Þ

where Si P 0 and Ri P 0 represent the effective particle

source and friction force, respectively. The explicit form

of these terms is not important; they can originate from

ionization, turbulence, friction due to charge-exchange

collisions, etc. As for the MP case we consider Boltz-

mann-distributed electrons and use the polytropic law

for the ions. In addition we assume that in the CPwe have

Vz,i = Vk,i sina and ok = oz sina, where ok denotes the

derivative along the magnetic field. As in [7,8] we assume

theVk,i�s to bemonotonically increasing towards the wall.

Using simple transformations we obtain from the

system (15)

Ziozni ¼
Z2
i si

miV 2
k;i � viT i

T eozne þ Zi
miV k;iSi þ niRi

miV 2
k;i � viT i

: ð16Þ

Summing over i and taking into account the quasineu-

trality constraint, we get

1� T e

XN
i¼1

Z2
i si

miV 2
k;i � viT i

 !
ozne ¼

XN
i¼1

Zi
miV k;iSi þ niRi

miV 2
k;i � viT i

:

ð17Þ

This equation exhibits a singularity when

XN
i¼1

Z2
i si

miV 2
k;i � viT i

¼ 1

T e

: ð18Þ

It is easy to check that the singularity condition (18)

is satisfied between each two neighboring points where

two ion velocities Vk,i are passing the correspondingffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
viT i=mi

p
(between these points the left-hand side of

(18) varies from +1 to �1). As was mentioned in

[7,8], these singularities are unphysical and can be re-

moved (i.e. in this points the right hand side of the

expression (17) vanishes). Now we can use the inequali-

ties obtained for the MPE from the MP side. The set of
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inequalities (13) guarantees that before reaching the

MPE all Vk,i will pass the corresponding
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
viT i=mi

p
.

When the last Vk,i passes the corresponding value, the

left-hand side of (18) starts to decrease from +1 and

according to (14) will satisfy somewhere the singularity

condition (18). This singularity cannot be removed as

for these velocities the right-hand side of Eq. (17) is pos-

itively definite. Thus, the conditions (13) and (18) corre-

spond to the �sheath singularity� (oz !1), which defines

the MPE. Using Eq. (16) it is easy to check that at the

sheath singularity point we have Vk,i = Ci. These analy-

ses help in drawing the following conclusions.

Definition. The MPE for the N (positive) ion magne-

tized PWT is defined as the point where the following

condition is satisfiedXN
i¼1

Z2
i si

miV 2
k;i � viT i

¼ 1

T e

; V k;i >

ffiffiffiffiffiffiffiffi
viT i

mi

r
: ð19Þ

There the ion velocities satisfy the BCs

V 0
z;i ¼ C0

i sin a;

C02

i ¼ 1

mi
viT

0
i þ

ZiT 0
e

1þ ðoln ne ln siÞ
0

 !
: ð20Þ

As we see, the definition of the MPE as a sheath sin-

gularity point in the CP is much more precise than the

one obtained from the MP side. Still it leaves out the

supersonic case. It can happen that the ion velocities

entering the CP from the plasma bulk side are already

�supersonic� and satisfy the condition

XN
i¼1

Z2
i si

miV 2
k;i � viT i

<
1

T e

; V k;i > V k;i >

ffiffiffiffiffiffiffiffi
viT i

mi

r
: ð21Þ

In this case there exists no sheath singularity, but the

MP can still develop if these velocities are not too large

(see Eq. (12)), Vk,i < Ci/sina, i = 1, . . . ,N. This super-

sonic case will be considered elsewhere.

Now we can complete the set of BCs at the MPE.

Using (2), (3) and (20) we obtain

D/MP ¼ T e

e
ln

V e
Tffiffiffiffiffiffi
2p

p 1� GePN
i¼1s

0
i ZiC

0
i � I=en0e sin a

 !
;

ci ¼ 2:5þ 0:5 vi þ
ZiT 0

e

T 0
i

1

1þ ðoln ne ln siÞ
0

 !
þ Dci:

ð22Þ

The system (22) together with (1) and (20) represents

the full set of BCs at the MPE. Introducing the �screen-
ing temperature� for the electrons [2], T e ¼ ene

oune
, one can

generalize these BCs (except for (1)) for any electron dis-

tribution. Moreover, in our analysis we do not use the

condition vi = const, so that all above obtained results

are applicable for any case by substituting in the BCs

(20) and (22) vi = 1 + (oz lnTi/oz lnni)j0.
Let us consider some examples. Single-ion case. The

BCs then reduce to the ones from (5). Two-ion case. For
simplicity we assume monotonic profiles

(ozne = oz(n1 + n2) < ozn1 < 0) and v1,2 = Z1,2 = 1,

I = Ge = 0. Then the BCs are given by (we omit the

index �0�)

V z;1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 1

m1

1þ T e

T 1

1

1þ n

� �s
sin a;

V z;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2

m2

1þ T e

T 2

s1 � 1

s1ðnþ 1Þ � 1

� �s
sin a;

D/MP ¼ b
T e

e
;

b ¼ � ln

ffiffiffiffiffiffiffiffiffiffiffi
2pme

m1

s
s1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 1

T e

þ 1

1þ n

s  

þð1� s1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1

m2

T 2

T e

þ s1 � 1

s1ðnþ 1Þ � 1

� �s !!
;

ce ¼ 2þ b; c1 ¼ 3þ T e

T 1

0:5

1þ n
þ Dci; n ¼ oln ne ln s1;

c2 ¼ 3þ T e

2T 2

s1 � 1

s1ðnþ 1Þ � 1
þ Dci; �1 < n <

1

s1
� 1:

ð23Þ

Note that, depending on the concentration gradient

n, the BCs can strongly deviate from the GBC.
3. PIC simulations

In order to clarify kinetic effects and to find realistic

values for the concentration gradients a set of high-accu-

racy (particle-in-cell) PIC simulations has been per-

formed. We have used the 1d3v (one spatial and three

velocity dimension) code BIT1 [12], which was devel-

oped on the bases of the XPDP1 code [14].

The simulation setup represents a bounded plasma

between two walls, with a particle source in the middle

of the system. During the simulation, Maxwellian dis-

tributed electrons and ions are injected into the source

region, which is about 5 tritium gyro-radii wide. After

a few ion transit times (system half size along the mag-

netic field over VT,i) the system reaches a stationary

state. The electron and ion motions are fully resolved

and elastic and inelastic charged-neutral collisions are

taken into account, so that the PWTs (on each side of

the system) develop self-consistently. The neutrals con-

stitute a fixed Maxwellian background with a given uni-

form density and temperature. Charged-neutral

collisions are treated via the �null collision� method

[15]. For more details the interested reader is referred

to [12,16].

Three sets of simulations have been run, with just a D

plasma, a DT mixture (with different D and T concentra-

tions), and a HDT mixture. The plasma parameters cho-

sen are typical for fusion edge plasmas: n0 � 1018 m�3,



Table 1

Mach numbers from theory and simulation

Ion and neutral concentration D;D50%
þ ; T;T50%

þ D;D75%
þ ; T;T25%

þ H;H20%
þ ; D;D40%

þ ;T; T40%
þ

PIC MD = 0.99,MT = 1.01 MD = 0.99,MT = 1.01 MH = 0.96, MD = 1.00,MT = 1.02

Analytic MD = 1.03,MT = 0.98 MD = 1.03,MT = 0.98 MH = 1.08, MD = 1.03,MT = 0.96
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T0 � 20 eV, B = 1 T and a = 5�. The differential cross-

sections for elastic, excitation and ionization electron

collisions with atomic H, D and T, as well as for elastic

and charge-exchange collisions between atomic and ionic

hydrogen isotopes have been taken from [17,18].

The relatively small difference in the masses and coll-

isionalities of the hydrogen isotopes resulted in small

concentration gradients (jo ln si/o lnnej0 6 0.2), so that

the BCs obtained from the PIC simulations, from our

theory, and from GBC agree within an accuracy of a

few percent. In Table 1 we give, as an example, Mach

numbers, M ¼ V 0
k=C

0
s , obtained from PIC simulations

and from our theory. From Table 1 it emerges that, in

spite of the very small difference, the analytical and

PIC results show different tendencies. The analytic Mach

numbers are subsonic for heavier ions and for lighter

ones, while the PIC results show the opposite. The prob-

lem is the assumption of magnetized ions at the MPE (7)

used in our and, probably, in all other fluid models of

the magnetized PWT. These results indicate the limita-

tions of our theory: if in the PWT there are different

ion species with strongly different Larmor radius, qi,
then ones with large qi can be unmagnetized at the

MPE and the presented fluid theory fails.
4. Conclusion

The magnetized (positive) multi-ion PWTs can be di-

vided into two classes. The first one corresponds to

PWTs consisting of ions whose Larmor radii qi do not

differ significantly. In this case the theory presented

above is applicable, i.e., one can derive the position of

the MPE and the corresponding BCs. In the particular

case of a PWT with hydrogen isotopes, considered by

us, different isotopes have also similar collisionality

and the ensuing BCs do not differ from the GBC. Thus,

if the impurity concentration is negligibly small, the

GBC is a very good approximation for hydrogen isotope

PWTs. If there are different ions with similar qi, but with
the different collisionalities giving rise to a strong con-

centration gradient inside the PWT, then the GBC is

not applicable any more and our model has to be used.

The second class of PWTs comprises those with a sig-

nificant concentration of ion species with strongly differ-

ent Larmor radii. In this case the ion species with larger
qi will not be magnetized at the MPE (defined by condi-

tion (19)). Thus, the conditions used in our model can be

violated and it cannot be applied. The corresponding

study will be the topic of future work.
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